• Типы ткани и их особенности строения и месторасположение в организме. Мышечная система животных

    12.04.2024

    Мышца как орган

    В организме человека выделяют 3 вида мышечной ткани:

    Скелетная

    Поперечнополосатая

    Поперечнополосатая скелетная мышечная ткань образована цилиндрической формы мышечными волокнами длиной от 1 до 40 мм и толщиной до 0.1 мкм, каждое из которых представляет собой комплекс, состоящий из миосимпласта и миосателито, покрытых общей базальной мембраной, укрепленной тонкими коллагеновыми и ретикулярными волокнами. Базальная мембрана формирует сарколемму. Под плазмолеммой миосимпласта располагается множество ядер.

    В саркоплазме находятся цилиндрические миофибриллы. Между миофибриллами залегают многочисленные митохондрии с развитыми кристами и частичками гликогена. Саркоплазма богата белков миоглобином, который подобно гемоглобину, может связывать кислород.

    В зависимости от толщины волокон и содержания в них миоглобина различают:

    Красные волокна:

    Богаты саркоплазмой, миоглобином и митохондриями

    Однако они самые тонкие

    Миофибриллы в них расположены группами

    Окислительные процессы более интенсивны

    Промежуточные волокна:

    Беднее миоглобином и митохондриями

    Более толстые

    Окислительные процессы менее интенсивны

    Белые волокна:

    - самые толстые

    - количество миофибрилл в них больше и располагаются они равномерно

    - окислительные процессы менее интенсивны

    - еще ниже содержание гликогена

    Структура и функция волокон неразрывно связана между собой. Так белые волокна сокращаются быстрее, но и быстро утомляются. (спринтеры)

    Красные способы к более длительному сокращению. У человека мышцы содержат все типы волокон, в зависимости от функции мышцы в ней преобладают тот или иной тип волокон. (стайеры)

    Строение мышечной ткани

    Волокна отличаются поперечной исчерченностью: темные анизотропные диски (А-диски) чередуются со светлыми изотропными дисками (I-диски). Диск А разделен светлой зоной H, в центре которой проходит мезофрагма (линия М), диск I разделен темной линией (телофрагма – Z линия). Телофрагма толще в миофибриллах красных волокон.

    Миофибриллы содержат сократительные элементы – миофиламенты, среди которых веделяют толстые (миозивные), занимающие А диск, и тонкие (актиновые), лежащие в I-диске и прикрепляющиеся к телофрагмам (Z-пластинки содержат белок альфа-актин), причем концы их проникают в А-диск между толстыми миофиламентами. Участок мышечного волокна расположенный между двумя телофрагмами, представляет собой сарконнер – сократительную единицу миофибрилл. Благодаря тому, что границы саркомеров всех миофибрилл совпадают, возникает регулярная исчерченность, которая хорошо видна на продольных срезах мышечного волокна.

    На поперечных срезах отчетливо видны миофибриллы в виде округлых точек на фоне светлой цитоплазмы.

    Согласно теории Huxley, Hanson, мышечное сокращение – результат скольжения тонких (актиновых) филаментов относительно толстых (миозиновых). При этом длина филаментов диска А не изменяется, диск I уменьшается в размерах и исчезает.

    Мышцы как орган

    Строение мышц. Мышца как орган состоит из пучков поперечнополосатых мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка и т.д. в целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой, составляя мышечное брюшко.

    Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.

    Так как сокращение мышцы вызывается импульсом, идущим от ЦНС, то каждая мышцы связана с ней нервами: афферентным, являющимся проводником «мышечного чувства» (двигательный анализатор, по К.П. Павлову), и эфферентным, приводящим к ней нервное возбуждение. Кроме того, к мышце подходят симпатические нервы, благодаря которым мышцы в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом.

    В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы.

    В мышечные ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).

    В мышце различают активно сокращающуюся часть – брюшко и пассивную часть – сухожилие.

    Таким образом, скелетная мышцы состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани, из нервной ткани, из эндотелия мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой – сократимость, она определяет функцию мускула как органа – сокращение.

    Классификация мышц

    Мышц насчитывается до 400 (в человеческом организме).

    По форме делятся на длинные, короткие и широкие. Длинные соответствуют рычагам движения, к которым они прикрепляются.

    Некоторые длинные начинаются несколькими головками (многоглавые) на различных костях, что усиливает их опору. Встречаются мышцы двуглавые, трехглавые и четырехглавые.

    В случае слияния мышц разного происхождения или развившихся из нескольких миотонов между ними остаются промежуточные сухожилия, сухожильные перемычки. Такие мышцы имеют два брюшка или больше – многобрюшные.

    Варьирует также число их сухожилий, которыми заканчиваются мышцы. Так, сгибатели и разгибатели пальцев рук и ног имеют по несколько сухожилий, благодаря чему сокращения одного мышечного брюшка дает двигательные эффект сразу на несколько пальцев, чем достигается экономия в работе мышц.

    Широкие мышцы – располагаются преимущественно на туловище и имеют расширенное сухожилие, называемое сухожильным растяжением или апоневрозом.

    Встречаются различные формы мышц: квадратная, треугольная, пирамидальная, круглая, дельтовидная, зубчатая, камбаловидная и др.

    По направлению волокон, обусловленному функционально, различаются мышцы с прямыми параллельными волокнами, с косыми волокнами, с поперечными, с круговыми. Последние образуют жомы, или сфинктеры, окружающие отверстия.

    Если косые волокна присоединяются к сухожилию с одной стороны, то получается так называемая одноперистая мышцы, а если с двух сторон, то двуперистая. Особое отношение волокон к сухожилию наблюдается в полусухожильной и полуперепончатой мышцах.

    Сгибатели

    Разгибатели

    Приводящие

    Отводящие

    Вращатели кнутри (пронаторы), кнаружи (супинаторы)

    Онто-филогенетические аспекты развития опорно-двигательного аппарата

    Элементы опорнодвигательного аппарата туловища у всех позвоночных развиваются из первичных сегментов (сомитов) дорсальной мезодермы, залегающих по бокам и нервной трубки.

    Возникающая из медиовентральной части сомита мезенхима (склеротом) идет на образование вокруг хорды скелета, а средняя часть первичного сегмента (миотом) дает мышцы (из дорсолатеральной части сомита образуется дерматом).

    При образовании хрящевого, а впоследтсвии костного скелета мышцы (миотомы) получают опору на твердых частях скелета, которые в силу этого располагаются также метамерно, чередуясь с мышечными сегментами.

    Миобласты вытягиваются,сливаются друг с другом и превращаются в сегменты мышечных волокон.

    Первоначально миотомы на каждой стороне отделяются друг от друга поперечными соединительнотканными перегородками. Также сегментированное расположение мускулатуры туловища у низших животных остается на всю жизнь. У высших же позвоночных и у человека благодаря более значительной дифференцировке мышечных масс сегментация значительно сглаживается, хотя следы ее и остаются как в дорсальной, так и в вентральной мускулатуре.

    Миотомы разрастаются в вентральном направлении и разделяются на дорсальную и вентральную часть. Из дорсальной части миотомов возникает спинная мускулатура, из вентральной – мускулатура, расположенная на передней и боковой сторонах туловища и называемая вентральной.

    Соседние миотомы могут срастаться между собой, но каждый из сросшихся миотомов удерживает относящийся к нему нерв. Поэтому мышцы, происходящие из нескольких миотомов иннервируются несколькими нервами.

    Виды мышц в зависимости от развития

    На основании иннервации всегда можно отличить аутохтонную мускулатуру от сместившихся в эту область других мышц – пришельцев.

      Часть мышц, развившихся на туловище, остается на месте, образуя местную (аутохтонную) мускулатуру (межреберные и короткие мышцы м/у отростками позвонков.

      Другая часть в процессе развития перемещается с туловища на конечности – трункофугальные.

      Третья часть мышц, возникнув на конечностях, перемещается на туловище. Это трункопетальные мышцы.

    Развитие мышц конечностей

    Мускулатура конечностей образуется из мезенхимы почек конечностей и получает свои нервы от передних ветвей спинномозговых нервов при посредстве плечевого и пояснично-крестцового сплетений. У низших рыб из миотов туловища вырастают мышечные почки, которые разделяются на два слоя, расположенные с дорсальной и вентральной сторон скелета.

    Подобным же образом у наземных позвоночных мышцы по отношению к зачатку скелета конечности первоначально располагаются дорсально и вентрально (разгибатели и сгибатели).

    Трунктопетальные

    При дальнейшей дифференцировке зачатки мышц передней конечности разрастаются и проксимальном направлении и покрывают аутохтонную мускулатуру туловища со стороны груди и спины.

    Кроме этой первичной мускулатуры верхней конечности, к поясу верхней конечности присоединяются еще трункофугальные мышцы, т.е. производные вентральной мускулатуры, служащшие для передвижения и фиксации пояса и переместившиеся на него с головы.

    У пояса задней (нижней) конечности вторичных мышц не развивается, так как он неподвижно связан с позвоночным столбом.

    Мышцы головы

    Возникают отчасти из головных сомитов, а главным образом из мезодермы жаберных дуг.

    Третья ветвь тройничного нерва (V)

    Промежуточно-лицевой нерв (VII)

    Языкоглоточный нерв (IX)

    Верхняя гортанная ветвь блуждающего нерва (Х)

    Пятая жаберная дуга

    Нижняя гортанная ветвь блуждающего нерва (Х)

    Работа мышц (элементы биомеханики)

    Каждая мышца имеет подвижную точку и неподвижную точку. Сила мышцы зависит от количества входящих в ее состав мышечных волокон и определяется площадью разреза в том месте, через которое проходят все волокна мышцы.

    Анатомический поперечник – площадь поперечного сечения, перпендикулярного длиннику мышцы и проходящего через брюшко в наиболее широкой его части. Этот показатель характеризует величину мышцы, ее толщину (фактически определяет объем мышцы).

    Абсолютная сила мышцы

    Определяется отношением массы груза (кг), который мышца может поднять и площади ее физиологического поперечника (см2)

    У икроножной мышцы – 15,9 кг/см2

    У трехглавой – 16,8 кг/см2

    Клетки мышечной ткани, как и нервные, могут возбуждаться при воздействии химических и электрических стимулов. Способность мышечных клеток укорачиваться (сокращаться) в ответ на действие определенного стимула связана с наличием особых белковых структур (миофибрилл ). В организме мышечные клетки осуществляют энергосберегающие функции, поскольку энергия, расходуемая при сокращении мышцы, затем выделяется в виде тепла. Поэтому при охлаждении организма происходят частые сокращения мышц (дрожь).

    По строению мышечные клетки напоминают другие клетки организма, но отличаются от них формой. Каждая мышечная клетка подобна волокну, длина которого может достигать 20 см. Поэтому часто мышечную клетку называют мышечным волокном .

    Характерной особенностью мышечных клеток (волокон) является присутствие в них больших количеств белковых структур, которые называются миофибриллами и сокращаются при раздражении клетки. Каждая миофибрилла состоит из коротких белковых волокон, называемых микрофиламенты. В свою очередь, микрофиламенты подразделяются на тонкие актиновые и более толстые миозиновые волокна . Сокращение происходит в ответ на нервное раздражение, которое передается к мышце от двигательной концевой пластинки по нервному отростку посредством нейромедиатора - ацетилхолина.

    В соответствии со строением и выполняемыми функциями, выделяют две разновидности мышечной ткани: гладкая и поперечнополосатая.

    Гладкая мышечная ткань

    Клетка гладкой мышечной ткани имеет веретенообразную форму. В центре расположено продолговатое ядро. Миофибриллы организованы не так строго упорядоченно, как в клетках поперечнополосатых мышц. Кроме этого, гладкие мышцы сокращаются медленнее, чем поперечнополосатые. Сокращение мышц происходит под действием химических медиаторов: ацетилхолина и адреналина. Работа гладких мышц регулируется автономной нервной системой (вегетативной).

    За счет этой ткани формируется большая часть стенок полых внутренних органов (желудочно-кишечный тракт, желчный пузырь, мочеполовые органы, кровеносные сосуды и т. д.).

    Поперечнополосатая мышечная ткань

    Под микроскопом в мышечной клетке можно видеть жесткую структурную организацию миофибрилл и их субъединиц (актиновых и миозиновых волокон). Они располагаются в виде чередующихся светлых и темных поперечных полос. Отсюда и произошло название этой разновидности мышечной ткани. Такой упорядоченный характер расположения актиновых и миозиновых волокон является отличительным признаком клеток поперечнополосатых мышц, поскольку в клетках гладкой мышечной ткани волокна расположены неупорядоченно.

    Эта разновидность мышечной ткани в свою очередь подразделяется на два типа: скелетная и сердечная.

    Скелетная мышечная ткань составляет 40-50% от общего веса тела, что делает скелет наиболее развитой частью человеческого организма. Большая часть скелетных мышц образует мускулатуру активной двигательной системы, а также формирует выражение лица (мимические мышцы), язык, горло, гортань, среднее ухо, тазовое дно и т. д. Эти мышцы находятся под контролем соматической нервной системы и поэтому могут сокращаться произвольно.

    Сердечная мышечная ткань представлена специфической формой поперечнополосатых мышц. По сравнению со скелетными мышцами, она имеет ряд особенностей.

    В отличие от краевого расположения ядер в клетке скелетных мышц, ядра в клетке мышечной ткани сердца располагаются в центре клетки. Сами клетки по диаметру меньше мышечных волокон скелетных мышц. В противоположность мышечным волокнам скелетных мышц, которые снаружи не имеют фибриллярных структур, необходимых для связывания между собой, клетки мышечной ткани сердца связаны друг с другом особыми вставочными дисками. Такая организация мышечных клеток сердца дает возможность электрическому импульсу веерообразно распространяться по стенкам обоих предсердий и внутренней поверхности желудочков. Еще одна особенность сердечной мышцы заключается в способности некоторых ее клеток генерировать импульсы не только в ответ на внешние раздражители, но и спонтанно. Активность клеток мышцы сердца находится под контролем автономной нервной системы.

    Строение скелетных мышц

    Мышечные волокна и соединительная ткань в скелетных мышцах тесно связаны между собой. Каждая мышца окружена особой оболочкой (эпимизий ), состоящей из плотной соединительной ткани. Каждая мышца состоит из отдельных пучков волокон (фасцикул), также окруженных собсенной оболочкой (перимизий ).

    Такие пучки волокон состоят из сотен мышечных фибрилл - мышечных клеток, покрытых оболочкой из соединительной ткани. Внутри каждая мышечная клетка содержит несколько сотен ядер, расположенных по периферии. В длину такая клетка может достигать нескольких см. Обычно мышечные фибриллы располагаются по всей длине мышцы и с двух концов прикрепляются к сухожилиям, которые скрепляют мышцу с костью (отсюда название - скелетные мышцы).


    Структурные и молекулярные основы сокращения скелетных мышц

    Выше мы уже говорили, что мышечные волокна состоят из миофибрилл способных сокращаться. Эти фибриллы расположены параллельно продольной оси клетки и посредством Z-дисков разделены на множество единиц, которые называются саркомерами.

    В каждом саркомере существует упорядоченная структура микрофиламентов, представленная актиновыми и миозиновыми нитями. Каждая актиновая нить связана с Z-диском саркомера, причем миозиновые нити, находящиеся в середине саркомера, с обеих сторон распространяются в область актиновых нитей.

    При сокращении эти нити скользят вдоль по отношению друг к другу. Каждый отдельный саркомер при этом становится короче, в то время как актиновые и миозиновые нити сохраняют свою длину. При растяжении мышцы происходит обратной процесс.

    Характер и продолжительность сокращения для поперечнополосатых скелетных мышц различны. Мышечные волокна, обладающие временем сокращения 30-40 мс, называются быстрыми (фазными) волокнами. Они отличаются от медленных (тонических) волокон, тем, что время сокращения для них составляет около 100 мс.

    Даже в состоянии покоя мышцы всегда находятся в активном (непроизвольном) напряжении (тонусе). Тонус скелетных мышц поддерживается за счет постоянно поступающих в них слабых импульсов. Мышечный тонус контролируется самостоятельно посредством мышечного веретена и сухожилий. При отсутствии мышечного тонуса говорят о вялом (атоническом) параличе.

    Если мышца в течение долгого времени не выполняет работу или нарушается ее иннервация, то она атрофируется. С другой стороны, при повышенной нагрузке на мышцы, например у спортсменов, происходит утолщение отдельных мышечных волокон и наступает гипертрофия мышц. При сильных повреждениях мышцы формируется шрам из соединительной ткани, поскольку способность мышц к регенерации ограничена.

    Кровоснабжение мышц

    Приток крови к мышце и, следовательно, снабжение ее кислородом зависит от работы, которую она совершает. Количество кислорода, необходимое работающей мышце, в 500 раз превышает потребность в кислороде мышцы, находящейся в состоянии покоя. Поэтому при мышечной работе количество крови, поступающее в мышцу, сильно возрастает (300-500 капилляров/мм3 объема мышцы) и может в 20 раз превышать этот показатель для неработающей мышцы.

    Мышечная система

    Мышечная система создаёт дополнительную опору телу животного и определяет его движение. Мышцы состоят из множества удлинённых клеток – мышечных волокон, способных сокращаться под действием электрических импульсов. Различают поперечно-полосатые, гладкие и сердечные мышцы.

    Поперечно-полосатые мышцы присоединяются к костям при помощи плотных и малорастяжимых сухожилий, состоящих из коллагена. Один конец сухожилия переходит в наружную оболочку мышцы, а другой плотно прикреплен к надкостнице.

    При раздражении мышечное волокно будет сокращаться только в том случае, если стимулирующий импульс превысит некоторую пороговую величину. Такое сокращение будет максимальным и не изменится при ещё большем увеличении импульса. Согласно современным представленим сокращение вызывается тем, что актиновые нити – один из типов мышечных нитей – скользят по миозиновым. Необходимая для этого энергия образуется в результате расщепления АТФ. При интенсивных сокращениях поставляемого в мышцы кислорода оказывается недостаточно; говорят, что работа мышцы создаёт кислородную задолженность. При этом начинает образовываться молочная кислота – токсичный продукт, который в печени превращается в глюкозу или полностью разлагается на углекислый газ и воду.

    Тип сокращения зависит от способа фиксации мышц: он может быть изотоническим (сокращение при постоянной нагрузке) и изометрическим (мышца развивает напряжение, но её длина не изменяется). Ответ на однократное раздражение длится около 0,05 с. Фаза сокращения длится около 0,1 с, после чего наступает длительный – около 0,2 с – период расслабления, когда мышечное волокно некоторое время неспособно сокращаться. Если интервал между двумя сокращениями незначителен, то второе сокращение накладывается на первое; при этом во второй раз развивается большее напряжение. При ритмическом раздражении напряжение достигает некоторого уровня (плато) и остается на нём достаточно долго, после чего наступает утомляемость и расслабление.

    Двигательные аксоны, подходя к мышцам, ветвятся. Группа мышечных волокон (в бицепсе тысячи волокон) и иннервирующий её аксон образуют двигательную единицу; все мышечные волокна в ней сокращаются одновременно. Чем меньше волокон в двигательной единице, тем более тонкий контроль осуществляется со стороны нервной системы. Регуляция напряжения, вызываемого мышцой, может осуществляться:

    Изменением количества двигательных единиц, возбуждающихся в данный момент;

    Изменением количества нервных импульсов в секунду.

    Волокна скелетных мышц можно разделить на тонические и фазические. Тонические волокна окрашены в красный цвет, расположены в глубине мышц, имеют собственные запасы кислорода, связанного с родственным гемоглобину крови белком миоглобином. Они обеспечивают длительное сокращение мышцы (например, связанное с противодействием силе тяжести – мышцы спины, шеи, поддерживающие нижнюю челюсть). Фазические волокна преимущественно белые, залегают на поверхности мышц и обеспечивают быстрое и сильное сокращение, но быстро утомляются.



    Для того, чтобы сместить кость, а затем вернуть её в первоначальное положение, необходима хотя бы пара мышц, например, сгибатель и разгибатель. Когда одна из мышц сокращается, другая должна расслабляться. Это достигается благодаря тормозным рефлексам спинного мозга, блокирующим импульсы, идущие к соответствующей группе мышц.

    Гладкая мускулатура образует стенки кровеносных сосудов, кишечника, мочевого пузыря и других органов. Клетки гладкой мускулатуры образуют поперечные и продольные слои; сокращение первых приводит к удлинению и утончению органа (например, кишки); сокращение вторых вызывает обратный эффект. Гладкие мышцы способны к самопроизвольным сокращениям; так растяжение мускулатуры при наполнении пищеварительных проходов обычно сразу приводит к её сокращению. Такая координированная работа мышц называется перистальтикой и способствует перемещению содержимого внутри полых органов.

    Животное в целом передвигается отнюдь не за счет беспорядочного сокращения различных скоплений мышечных клеток.

    Мышечная активность координируется нервной системой, эта координация и обеспечивает совместную работу мышц. Каждая отдельная мышца сама по себе представляет гармоничное объединение сократимых единиц независимо от того, гладкие это мышечные клетки, поперечнополосатые или ветвящиеся волокна сердечной мышцы. Каждое такое объединение клеток обычно окружено тонким, но прочным листком соединительной ткани. В самом простом случае организации мышцы оси всех клеток или волокон располагаются параллельно, так что все они создают тягу в одном и том же направлении. Но не всегда дело обстоит так просто, в крупных мышцах нередко одни части мышцы должны создавать усилия в направлениях, не совпадающих с направлением других частей, или развивать большую силу сокращения. От многих мышц требуется только создание натяжения. Волокна этих мышц располагаются под углом к направлению тяги, так что их сокращение вызывает лишь незначительное укорочение мышцы, но создает очень большое усилие.

    Одной из наиболее важных особенностей мышечных клеток является их способность развивать усилие в одном направлении — в направлении сокращения. Сократившаяся мышца не может сама себя растянуть. Поэтому необходимые для перемещения и разнообразных двигательных актов циклы сокращения и растягивания почти всегда требуют участия двух и более мышц. Работа таких мышц определяется особым строением скелета, так что сокращение одних мышц уравновешивается сокращением других. Мышцы, работающие таким образом, обычно называют антагонистами.

    Типичным примером мышц-антагонистов могут служить мышцы конечностей позвоночных или членистоногих. Почти каждый сустав в конечностях позвоночного или членистоногого сгибается под действием одного или нескольких мышц-сгибателей и выпрямляется или разгибается благодаря одному или нескольким разгибателям. Сочетание расчлененного скелета и дифференцированной мускулатуры, характерное для позвоночных и членистоногих, и лежит в основе точных и повторно воспроизводимых движений, позволяющих этим животным вырабатывать чрезвычайно сложные формы поведения. Сгибатели и разгибатели обычно действуют одновременно, чем достигается очень тонкая проработка движений и усилий. Кроме того, стимуляция этих мышц нервной системой осуществляется способом автоматической координации, так что при сокращении одной группы мышц подавляется активность и происходит частичное расслабление другой. Антагонизм мышц — это не беспорядочное противодействие, а, наоборот, координированный, реципрокный механизм, при котором оба члена каждой пары поддерживают необходимый тонус, и если один расслаблен, другой сокращается и вызывает движение сустава.

    В некоторых случаях сокращению одних мышц противодействуют не антагонисты, а упругость эластичной соединительной ткани. Сложным вариантом такого рода является мускулатура хрусталика глаза млекопитающих. Сферический хрусталик глаза обычно слегка уплощен из-за натяжения прикрепленных к нему волокон соединительной ткани. В такой форме хрусталик настроен на удаленные предметы. Сокращение ресничной мышцы (кольцо гладких мышечных клеток) ослабляет натяжение удаленных концов эластичных соединительнотканных волокон, позволяя хрусталику принимать более округлую форму и фокусировать изображение близко расположенных объектов. С возрастом хрусталик теряет свою эластичность, а вместе с этим и способность принимать сферическую форму, и в результате развивается дальнозоркость. Пожилые люди обычно вынуждены держать книгу в вытянутой руке, чтобы отчетливо видеть шрифт, если они, конечно, не пользуются очками. Другим примером «упругого антагонизма» служит замок раковины двустворчатого моллюска и стенка тела нематоды.

    У многих животных стенка тела, стенка кишечного тракта и других трубчатых органов обычно содержит два слоя мышц. У позвоночных это, как правило, гладкие мышцы, за исключением стенки тела. Один слой мышц имеет кольцевые волокна, сокращение которых сужает просвет трубки или сжимает ее содержимое. Волокна другого слоя лежат продольно, под прямым углом к кольцевым волокнам, или параллельно оси трубки. При сокращении этих волокон трубчатый орган укорачивается и утолщается. Такое устройство характерно для стенки тела кишечнополостных, кольчатых червей и кишечного тракта более высокоорганизованных животных.

    Чередование и координация сокращений кольцевых и продольных волокон по-разному изменяют форму полости трубки. Например, волна сокращения кольцевых мышц может медленно перемещаться вдоль трубки, и этот процесс, называемый перистальтикой, вызывает передвижение содержимого трубки в одном направлении. Особая разновидность кольцевых мышц, называемая сфинктером, разделяет различные сегменты трубчатого органа или контролирует вход и выход из него. Примерами такого рода могут служить анальный сфинктер, расположенный у окончания пищеварительной трубки, и пилорический сфинктер, регулирующий поступление желудочного содержимого в тонкий кишечник. Когда замкнутую полость трубчатого органа или мягкотелого животного окружают кольцевые и продольные мышцы, они все являются взаимно антагонистичными. Поскольку объем полости не может уменьшиться, то сокращение одних мышц обязательно вызывает растяжение других. Такую организацию мышц-антагонистов обычно называют гидростатическим скелетом. Наглядным примером животного, имеющего такой гидростатический скелет, служит дождевой червь: сокращение мышц стенки его тела может обеспечить передвижение даже в отсутствие столь характерного для других животных прочного скелета. Гидростатический скелет встречается и у животных, обладающих твердым скелетом. Трубчатые ножки иглокожих, например, работают по этому же принципу.

    Мышечная ткань признана доминантной тканью человеческого организма, удельный вес которой в общем весе человека составляет до 45 % у мужчин и до 30 % у представительниц прекрасного пола. Мускулатура включает разнообразные мышцы. Виды мышц насчитывают более шестисот наименований.

    Значение мышц в организме

    Мышцы играют крайне важную роль в любом живом организме. С их помощью приводится в движение опорно-двигательный аппарат. Благодаря работе мышц человек, как другие живые организмы, может не только ходить, стоять, бегать, совершать любое движение, но и дышать, жевать и перерабатывать пищу, и даже самый главный орган - сердце - тоже состоит из мышечной ткани.

    Как осуществляется работа мышц?

    Функционирование мышц происходит благодаря следующим их свойствам:

    • Возбудимость - это процесс активации, проявляемый в виде ответной реакции на раздражитель (как правило, это внешний фактор). Свойство проявляется в виде изменения обмена веществ в мышце и её мембране.
    • Проводимость - свойство, означающее способность мышечной ткани передавать образовавшийся в результате воздействия раздражителя нервный импульс от мышечного органа к спинному и головному мозгу, а также в обратном направлении.
    • Сократимость - конечное действие мускулатуры в ответ на стимулирующий фактор, проявляется в виде укорачивания мышечного волокна, также меняется тонус мышц, то есть степень их напряжённости. При этом скорость сокращения и максимальная напряжённость мускулатуры могут быть различными как следствие разного влияния раздражителя.

    Следует отметить, что работа мышц возможна благодаря чередованию вышеописанных свойств чаще всего в следующем порядке: возбудимость-проводимость-сократимость. В случае если речь идёт о произвольной работе мускулатуры и импульс идёт от центральной нервной системы, то алгоритм будет иметь вид проводимость-возбудимость-сократимость.

    Строение мышц

    Любая мышца человека состоит из совокупности продолговатых действующих в одном и том же направлении клеток, называемой мышечным пучком. Пучки, в свою очередь, содержат мышечные клетки длиной до 20 см, именуемые также волокнами. Форма клеток поперечно-полосатых мышц продолговатая, гладких - веретенообразная.

    Мышечное волокно представляет собой продолговатой формы клетку, ограниченную внешней оболочкой. Под оболочкой параллельно друг другу располагаются способные сокращаться белковые волокна: актиновые (светлые и тонкие) и миозиновые (тёмные, толстые). В периферийной части клетки (у поперечно-полосатых мышц) располагается несколько ядер. У гладких мышц ядро всего одно, оно имеет местоположение в центре клетки.

    Классификация мышц по различным критериям

    Наличие различных характеристик, отличных у тех или иных мышц, позволяет их условно группировать по объединяющему признаку. На сегодняшний день анатомия не располагает единой классификацией, по которой можно было бы сгруппировать человеческие мышцы. Виды мышц однако можно классифицировать по разнообразным признакам, а именно:

    1. По форме и длине.
    2. По выполняемым функциям.
    3. По отношению к суставам.
    4. По локализации в теле.
    5. По принадлежности к определённым частям тела.
    6. По расположению мышечных пучков.

    Наряду с видами мышц выделяют три основные группы мышц в зависимости от физиологических особенностей строения:

    1. Поперечно-полосатые скелетные мышцы.
    2. Гладкие мышцы, составляющие структуру внутренних органов и сосудов.
    3. Сердечные волокна.

    Одна и та же мышца может принадлежать одновременно к нескольким группам и видам, перечисленных выше, поскольку может содержать сразу несколько перекрёстных признаков: форму, функции, отношение к части тела и т.д.

    Форма и величина мышечных пучков

    Несмотря на относительно одинаковое строение всех мышечных волокон, они могут быть разной величины и формы. Таким образом, классификация мышц по данному признаку выделяет:

    1. Короткие мышцы приводят в движение небольшие участки опорно-двигательной системы человека и, как правило, находятся в глубоких слоях мускулатуры. Пример - межпозвоночные спинные мышцы.
    2. Длинные, наоборот, локализованы на тех частях тела, которые совершают большие амплитуды движений, например конечности (руки, ноги).
    3. Широкие покрывают в основном туловище (на животе, спине, грудине). Могут иметь разную направленность мышечных волокон, обеспечивая тем самым разнообразные сократительные движения.

    Встречаются в организме человека и различные формы мускулатуры: круглые (сфинктеры), прямые, квадратные, ромбовидные, веретенообразные, трапециевидные, дельтовидные, зубчатые, одно- и двухперистые и мышечные волокна других форм.

    Разновидности мускулатуры по выполняемым функциям

    Скелетные мышцы человека могут выполнять различные функции: сгибание, разгибание, приведение, отведение, вращение. Исходя из данного признака, мышцы можно условно сгруппировать следующим образом:

    1. Разгибатели.
    2. Сгибатели.
    3. Приводящие.
    4. Отводящие.
    5. Вращательные.

    Первые две группы всегда находятся на одной части тела, но в противоположных сторонах таким образом, что когда сокращаются первые, вторые расслабляются, и наоборот. Сгибающие и разгибающие мышцы приводят в движение конечности и являются мышцами-антогонистами. Например, мышца плеча бицепс сгибает руку, а трицепс разгибает. Если в результате работы мускулатуры часть тела или орган совершает движение в сторону тела, эти мышцы приводящие, если в обратном направлении - отводящие. Вращатели обеспечивают круговые движения шеи, поясницы, головы, при этом вращатели делятся на два подвида: пронаторы, осуществляющие движение внутрь, и супинаторы, обеспечивающие движение в наружную сторону.

    По отношению к суставам

    Мускулатура крепится с помощью сухожилий к суставам, приводя их в движение. В зависимости от варианта крепления и количества суставов, на которые воздействуют мышцы, они бывают: односуставные и многосуставные. Таким образом, если мускулатура крепится только к одному суставу, то это односуставная мышца, если к двум - двусуставная, а если больше суставов - многосуставная (сгибатели/разгибатели пальцев).

    Как правило, односуставные мышечные пучки длиннее многосуставных. Они обеспечивают более полную амплитуду движения сустава относительно своей оси, поскольку расходуют свою сократительную способность только на один сустав, в то время как свою сократимость распределяют на два сустава многосуставные мышцы. Виды мышц последние короче и могут обеспечить гораздо меньшую подвижность при одновременном движении суставов, к которым они прикреплены. Ещё одним свойством многосуставной мускулатуры называют пассивную недостаточность. Её можно наблюдать, когда под влиянием внешних факторов мышца полностью растягивается, после этого она не продолжает движение, а, напротив, затормаживает.

    Локализация мускулатуры

    Мышечные пучки могут располагаться в подкожном слое, образуя поверхностные группы мышц, а могут и в более глубоких слоях - к ним относятся глубинные мышечные волокна. Так например, мускулатура шеи состоит из поверхностных и глубинных волокон, одни из которых отвечают за движения шейного отдела, а другие оттягивают кожу шеи, прилегающего участка кожи груди, а также участвуют в поворотах и опрокидываниях головы. В зависимости от расположения по отношению к определённому органу могут быть внутренние и наружные мышцы (наружные и внутренние мышцы шеи, живота).

    Виды мускулатуры по частям тела

    По отношению к частям тела мускулатура делится на следующие виды:

    1. Мышцы головы подразделяются на две группы: жевательные, отвечающие за механическое измельчение пищи, и мимические мышцы - виды мышц, благодаря которым человек выражает свои эмоции, настроение.
    2. Мышцы туловища подразделяются по анатомическим отделам: шейные, грудные (большая грудинная, трапециевидная, грудинно-ключичная), спинные (ромбовидная, широчайшая спинная, большая круглая), брюшные (внутренние и наружные брюшные, в том числе пресс и диафрагма).
    3. Мышцы верхних и нижних конечностей: плечевые (дельтовидная, трёхглавая, двуглавая плечевая), локтевые сгибатели и разгибатели, икроножные (камбаловидная), берцовые, мышцы стопы.

    Разновидности мускулатуры по расположению мышечных пучков

    Анатомия мышц у различных видов может отличаться расположением мышечных пучков. В связи с этим выделяют такие мышечные волокна, как:

    1. Перистые напоминают строение птичьего пера, в них пучки мышц крепятся к сухожилиям только одной стороной, а другой расходятся. Перистая форма расположения мышечных пучков характерна для так называемых сильных мышц. Место их крепления к надкостнице является довольно обширным. Как правило, они короткие и могут развивать большую силу и выносливость, при этом тонус мышц не будет отличаться большой величиной.
    2. Мышцы с параллельным расположением пучков также называют ловкими. По сравнению с перистыми они имеют большую длину, при этом менее выносливы, однако могут выполнять более тонкую работу. При сокращении напряжение в них значительно увеличивается, что значительно снижает их выносливость.

    Группы мускулатуры по структурным особенностям

    Скопления мышечных волокон образуют целые ткани, структурные особенности которых обуславливает их условное разделения на три группы:


    Похожие статьи